A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy
نویسندگان
چکیده
Above-ground biomass (AGB) provides a vital link between solar energy consumption and yield, so its correct estimation is crucial to accurately monitor crop growth and predict yield. In this work, we estimate AGB by using 54 vegetation indexes (e.g., Normalized Difference Vegetation Index, Soil-Adjusted Vegetation Index) and eight statistical regression techniques: artificial neural network (ANN), multivariable linear regression (MLR), decision-tree regression (DT), boosted binary regression tree (BBRT), partial least squares regression (PLSR), random forest regression (RF), support vector machine regression (SVM), and principal component regression (PCR), which are used to analyze hyperspectral data acquired by using a field spectrophotometer. The vegetation indexes (VIs) determined from the spectra were first used to train regression techniques for modeling and validation to select the best VI input, and then summed with white Gaussian noise to study how remote sensing errors affect the regression techniques. Next, the VIs were divided into groups of different sizes by using various sampling methods for modeling and validation to test the stability of the techniques. Finally, the AGB was estimated by using a leave-one-out cross validation with these powerful techniques. The results of the study demonstrate that, of the eight techniques investigated, PLSR and MLR perform best in terms of stability and are most suitable when high-accuracy and stable estimates are required from relatively few samples. In addition, RF is extremely robust against noise and is best suited to deal with repeated observations involving remote-sensing data (i.e., data affected by atmosphere, clouds, observation times, and/or sensor noise). Finally, the leave-one-out cross-validation method indicates that PLSR provides the highest accuracy (R2 = 0.89, RMSE = 1.20 t/ha, MAE = 0.90 t/ha, NRMSE = 0.07, CV (RMSE) = 0.18); thus, PLSR is best suited for works requiring high-accuracy estimation models. The results indicate that all these techniques provide impressive accuracy. The comparison and analysis provided herein thus reveals the advantages and disadvantages of the ANN, MLR, DT, BBRT, PLSR, RF, SVM, and PCR techniques and can help researchers to build efficient AGB-estimation models.
منابع مشابه
Potential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملDevelopment of an allometric model to estimate above-ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran
This research develops an allometric model for estimation of biomass based on the height and DBH of trees in the Hyrcanian forests of Iran. An accurate allometric model reduces the uncertainty of allometric equation in biomass estimation using radar images. In this study, 317 trees were selected randomly from the 4 different dominant tree species for the development of an allometric model cover...
متن کاملNon-destructive Method for Estimating Biomass of Plants Using Digital Camera Images
Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...
متن کاملDetermine the most suitable Allometric equations for Estimating Above-ground Biomass of the Juniperus excelsa
Today, modeling and determination of allometric equations of forest trees, especially Junipers trees, are very important for determination of biological status and carbon storage capacity of forest species. The aim of this study was to determine the most suitable allometric equations for estimating the biomass of leaf, sub branch, main branch, trunk, and biomass of total Juniperus excelsa tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018